Carbonylation of acetaldehyde in the presence of transition metal compounds

G. A. Korneeva, N. N. Ezhova, * and E. V. Slivinsky

A. V. Topchiev Institute of Chemical Petroleum Synthesis, Russian Academy of Sciences, 29 Lenynsky prosp., 117912, Moscow, Russian Federation. Fax: +7 (095) 230 2224

The carbonylation of acetaldehyde to give butyl lactate has been carried out in the presence of rhodium and cobalt compounds at $P_{\rm CO}=5$ —9 MPa and T=383—483 K.

Key words: acetaldehyde, carbonylation, Co, Pd, Rh compounds.

Lactic acid and its esters (lactates) are valuable organic compounds that can be obtained by carbonylation of acetaldehyde

 $CH_3CHO + CO + 2ROH \rightarrow CH_3CH(OR)C(O)OR + H_2O$, where R = H, Alk.

Only a few examples of this reaction in the presence of acid catalysts under rigorous conditions (35–45 MPa) are known. ^{1–4}

We attempted to carry out carbonylation of acetaldehyde in the presence of Group VIII transition metal compounds. By analogy with the carbonylation of olefins, 5 one might expect that the replacement of acid catalysts by transition metal compounds would allow carbonylation of acetaldehyde to occur under milder conditions. The activities of a series of Pd, Co, and Rh compounds in this reaction carried out at $P_{\rm CO} = 5-9$ MPa and T = 383-483 K were studied for $R = C_4H_9$. The results obtained are listed in Table 1.

The Pd compounds were inactive under the conditions studied. Cobalt was active only when it was used as the carbonyl, Co₂(CO)₈. The modification of the latter with phosphines (PPh₃ and PBu₃) increased its activity. Rh in the form of its carbonyl exhibited no noticeable activity, but it catalyzed the reaction when used as RhCl₃. In the presence of CH₃I or phosphines (PPh₃ and PBu₃), the activity decreased, and in the presence of HI it increased. The best result was achieved when the Co₂(CO)₈—RhCl₃ bimetallic catalytic system with a Co/Rh atomic ratio of 4 was used.

The activity of catalytic systems based on Co and Rh increased 10-fold as the CO pressure increased from 5 to 9 MPa and did not depend on the temperature over the 383—483 K temperature range.

Unlike Co and Rh compounds, acids did not catalyze carbonylation of acetaldehyde under the conditions considered.

Table 1. The results of carbonylation of acetaldehyde to give butyl 2-butoxypropionate (dibutyl lactate, DBL) in the presence of transition metal compounds (T = 423 K, $P_{\text{CO}} = 9 \text{ MPa}$, $\tau = 3 \text{ h}$)

Catalyst	Additive*	DBL (%)	$\frac{m^{**}}{h^{-1}}$
PdCl ₂		0.0	0.0
	PPh ₃	0.0	0.0
CoCl ₂	_	0.0	0.0
Co(CH ₃ COO) ₂		0.0	0.0
Co ₂ (CO) ₈		4.0	0.8
	PBu_3	8.0	1.6
	PPh ₃	7.0	1.4
$Rh_4(CO)_{12}$	_	0.0	0.0
	HI	0.0	0.0
RhCl ₃		2.0	0.4
	PPh_3	0.0	0.0
	CH ₃ I	0.5	0.1
	ΗĬ	10.0	2.0
RhCl ₃ +Co ₂ (CO)) ₈ —	15.0	3.0
	HI	0.0	0.0
	HC1	0.0	0.0

^{*} The P/M ratio was 10 g-at/g-at (M = Pd, Co, Rh); [HI], $[CH_3I]$, [HCI] = 0.1 mol L^{-1} .

Experimental

Carbonylation of acetaldehyde was carried out at a constant pressure and a constant temperature in a 250 mL stainless-steel autoclave equipped with a stirrer. n-Butanol (40 mL) and a catalyst (1.2 · 10^{-4} mol) was placed in the autoclave, and then CO was pumped in until the working pressure was achieved. The resulting mixture was heated to a definite temperature, and then acetaldehyde (5.8 mL) was injected using a dosing apparatus. The reaction was carried out for 3 h.

^{**} m is the number of working cycles of the catalyst.

The liquid products were analyzed by GLC using a 3 m×2 mm column packed with N-AW Chromaton with 5 % PEG. Butyl 2-butoxypropionate (dibutyl lactate) was identified by GC-MS.

References

1. S. K. Bhattacharyya, S. K. Palit, and A. R. Das, *Ind. Eng. Chem. Prod. Res. Develop.*, 1970, **9**, 92.

- 2. Jpn. Pat. 82106503; Chem. Abstr., 1982, 97, 162396p.
- 3. US Pat. 3948986; Chem. Abstr., 1976, 85, 5198.
- A. L. Lapidus, S. Ya. Grobovenko, A. V. Goryachevskaya, and A. D. Kagarlitskii, *Izv. Akad. Nauk SSSR, Ser. khim.*, 1985, 1687 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1546 (Engl. Transl.)].
- R. A. Sheldon, Khimicheskie produkty na osnove sintez-gaza, Khimiya, Moscow, 1987 (Russ. Transl) [Chemicals from Synthesis Gas, D. I. Reidel Publishing Company, Dordrecht, Boston, Landcaster].

Received November 25, 1994